Degree Correlations

Considering an undirected graph network with no degree correlation. Let (e_jk) be the probability to find a node with degree j and degree k at the two ends of a randomly selected edge and let (q_k) be the probability to have a degree k node at the end of a link. You are given the average degree:

<k> = 10

and the following degree-distribution probability masses (all other (p_k) can be anything consistent and are not needed):

p_20 = 0.04

p_30 = 0.03

p_50 = 0.02

Using only the information above, compute the 3×3 submatrix of e_jk for degrees 20, 30, and 50. Which option matches this block? Consider the theoretical e_jk for the network with no degree correlation and that the matrix rows and columns correspond to degrees 20, 30, and 50 in that order.

A)

{0.0064  0.0072  0.0080 }

{0.0072  0.0081  0.0090 }

{0.0080  0.0090  0.0100 }


B)

{0.0032   0.0045   0.0060 }

{0.0045   0.0075   0.0080 }

{0.0060   0.0080   0.0090 }


C)

{0.0080   0.0090   0.0100 }

{0.0090   0.0100   0.0110 }

{0.0100   0.0110   0.0120 }


D)

{0.0064   0.0080   0.0096 }

{0.0080   0.0100   0.0120 }

{0.0096   0.0120   0.0144 }


E) None of the above.


Original idea by: Thiago Soares Laitz

Comentários

  1. Ótima questão! Fico com ela. Só botei uma formatação LaTeX mais bacaninha.

    ResponderExcluir

Postar um comentário

Postagens mais visitadas deste blog

DFS

Flow network